Closing Thu: TN 3
Final: Sat, June $3^{\text {rd }}$, 5:00-7:50pm, KANE 130

Closing Tue: TN 4
Closing next Thu: TN 5 (Last HW)

$$
\frac{1}{0!} f(b)+\frac{1}{1!} f^{\prime}(b)(x-b)+\frac{1}{2!} f^{\prime \prime}(b)(x-b)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(b)(x-b)^{3}+\cdots+\frac{1}{n!} f^{(n)}(b)(x-b)^{n}
$$

$T_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(b)(x-b)^{k}$
Taylor's Inequality (error bound):
on a given interval $[\mathrm{a}, \mathrm{b}]$,
if $\left|f^{(n+1)}(x)\right| \leq M$, then

$$
\left|f(x)-T_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-b|^{n+1}
$$

Entry Task:
Find the 9 ${ }^{\text {th }}$ Taylor polynomial for
$f(x)=e^{x}$ based at $b=0$,
and give an error bound on the interval
$[-2,2]$.
$f(x)=e^{x}$ as well as $\mathrm{T}_{1}(\mathrm{x}), \mathrm{T}_{2}(\mathrm{x}), \mathrm{T}_{3}(\mathrm{x}), \mathrm{T}_{4}(\mathrm{x})$ and $T_{5}(x)$ are shown:

Entry Task: Again consider,

$$
f(x)=e^{x} \text { based at } b=0
$$

Find the first value of n when Taylor's inequality gives an error less than 0.0001 on $[-2,2]$.

TN 4: Taylor Series

Def' n : The Taylor Series for $f(x)$ based at b is defined by

$$
\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(b)(x-b)^{k}=\lim _{n \rightarrow \infty} T_{n}(x)
$$

If the limit exists at a particular value of x, then we say the series converges at x. (i.e. the error goes to zero at x) Otherwise, we say it diverges at x .

The open interval of convergence gives the largest open interval of values over which the series converges.

Note: If

$$
\lim _{n \rightarrow \infty} \frac{M}{(n+1)!}|x-b|^{n+1}=0
$$

then x is in the open interval of convergence.

A few patterns we know:

$$
e^{x}=1+x+\frac{1}{2!} x^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}
$$

$$
\sin (x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots
$$

$$
=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}
$$

$$
\begin{aligned}
\cos (x) & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\cdots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}
\end{aligned}
$$

These converge for ALL values of x. So the open interval of convergence for each series above is $(-\infty, \infty)$

Visuals of Taylor Polynomials:

1. $f(x)=e^{x}$ as well as $T_{1}(x), T_{2}(x), T_{3}(x), T_{4}(x)$ and $T_{5}(x)$ are shown:

2. $f(x)=\sin (x)$ as well as $T_{1}(x), T_{3}(x), T_{5}(x)$, and $T_{7}(x)$ are shown:

3. $f(x)=\cos (x)$ as well as $T_{1}(x), T_{2}(x), T_{4}(x)$, $T_{6}(x)$, and $T_{8}(x)$ are shown:

Now consider $f(x)=\frac{1}{1-x}$ based at $\mathrm{x}=0$.
Find the $10^{\text {th }}$ Taylor polynomial.
What is the error bound on $[-1 / 2,1 / 2]$?
What is the error bound on $[-2,2]$?

Graph of $y=1 /(1-x)$:

$f(x)=1 /(1-x)$ as well as $T_{1}(x), T_{2}(x), T_{3}(x)$, $T_{4}(x)$, and $T_{5}(x)$ are shown:

Graph of $y=1 /(1-x)$ and $T_{10}(x)$:

We will find all the following, and for these they converge for $\mathbf{- 1}<\mathbf{x}<\mathbf{1}$. In other words, the open interval of convergence for these series is: $\mathbf{- 1}<\mathrm{x}<1$.

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+\cdots=\sum_{k=0}^{\infty} x^{k} \\
& -\ln (1-x)=x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1}
\end{aligned}
$$

$$
\arctan (x)=\underset{\infty}{x}-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots
$$

$$
=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}
$$

